Dynamic Parieto-premotor Network for Mental Image Transformation Revealed by Simultaneous EEG and fMRI Measurement

نویسندگان

  • Takafumi Sasaoka
  • Hiroaki Mizuhara
  • Toshio Inui
چکیده

Previous studies have suggested that the posterior parietal cortices and premotor areas are involved in mental image transformation. However, it remains unknown whether these regions really cooperate to realize mental image transformation. In this study, simultaneous EEG and fMRI were performed to clarify the spatio-temporal properties of neural networks engaged in mental image transformation. We adopted a modified version of the mental clock task used by Sack et al. [Sack, A. T., Camprodon, J. A., Pascual-Leone, A., & Goebel, R. The dynamics of interhemispheric compensatory processes in mental imagery. Science, 308, 702-704, 2005; Sack, A. T., Sperling, J. M., Prvulovic, D., Formisano, E., Goebel, R., Di Salle, F., et al. Tracking the mind's image in the brain II: Transcranial magnetic stimulation reveals parietal asymmetry in visuospatial imagery. Neuron, 35, 195-204, 2002]. In the modified mental clock task, participants mentally rotated clock hands from the position initially presented at a learned speed for various durations. Subsequently, they matched the position to the visually presented clock hands. During mental rotation of the clock hands, we observed significant beta EEG suppression with respect to the amount of mental rotation at the right parietal electrode. The beta EEG suppression accompanied activity in the bilateral parietal cortices and left premotor cortex, representing a dynamic cortical network for mental image transformation. These results suggest that motor signals from the premotor area were utilized for mental image transformation in the parietal areas and for updating the imagined clock hands represented in the right posterior parietal cortex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous EEG and fMRI reveals a causally connected subcortical-cortical network during reward anticipation.

Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have been used to study the neural correlates of reward anticipation, but the interrelation of EEG and fMRI measures remains unknown. The goal of the present study was to investigate this relationship in response to a well established reward anticipation paradigm using simultaneous EEG-fMRI recording in healthy human ...

متن کامل

Concurrent EEG/fMRI analysis by multiway Partial Least Squares.

Data may now be recorded concurrently from EEG and functional MRI, using the Simultaneous Imaging for Tomographic Electrophysiology (SITE) method. As yet, there is no established means to integrate the analysis of the combined data set. Recognizing that the hemodynamically convolved time-varying EEG spectrum, S, is intrinsically multidimensional in space, frequency, and time motivated us to use...

متن کامل

EEG-fMRI reciprocal functional neuroimaging.

OBJECTIVE Integration of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has been pursued in an effort to achieve greater spatio-temporal resolution of imaging dynamic brain activity. We report a data-driven approach to image spatio-temporal features of neural oscillatory activity and event-related activity from continuously recorded EEG and fMRI signals. METHODS...

متن کامل

Changes in resting connectivity with age: a simultaneous electroencephalogram and functional magnetic resonance imaging investigation.

Resting fluctuations in the blood oxygenation level-dependent signal have attracted considerable interest for their sensitivity to pathological brain processes. However, these analyses are susceptible to confound by nonneural physiological factors such as vasculature, breathing, and head movement which is a concern when investigating elderly or pathological groups. Here, we used simultaneous el...

متن کامل

A Single Session of rTMS Enhances Small-Worldness in Writer’s Cramp: Evidence from Simultaneous EEG-fMRI Multi-Modal Brain Graph

Background and Purpose: Repetitive transcranial magnetic stimulation (rTMS) induces widespread changes in brain connectivity. As the network topology differences induced by a single session of rTMS are less known we undertook this study to ascertain whether the network alterations had a small-world morphology using multi-modal graph theory analysis of simultaneous EEG-fMRI. Method: Simultaneous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cognitive neuroscience

دوره 26 2  شماره 

صفحات  -

تاریخ انتشار 2014